
Submitted to 1999 ACM International Conference on Supercomputing (ICS99)

Improving the Performance of Speculatively
Parallel Applications on the Hydra CMP

Kunle Olukotun, Lance Hammond and Mark Willey

Computer Systems Laboratory
Stanford University

Stanford, CA 94305-4070
http://www-hydra.stanford.edu/

Abstract

Hydra is a chip multiprocessor (CMP) with integrated support for thread-level speculation. Thread-level
speculation provides a way to parallelize sequential programs without the need for data dependence analysis
or synchronization. This makes it possible to parallelize applications for which static memory dependence
analysis is difficult or impossible. While performance of the baseline Hydra system on applications with sig-
nificant amounts of medium to large grain parallelism is good, the performance on integer applications with
fine-grained parallelism can be poor. In this paper, we describe a collection of software and hardware tech-
niques for improving speculation performance of the Hydra CMP. These techniques focus on reducing the
overheads associated with speculation and improving the speculation behavior of the applications using code
restructuring. When these techniques are applied to a set of ten integer, multimedia and floating-point bench-
marks, significant performance improvements result.

1 Introduction

Hardware support for speculative thread parallelism makes it possible to parallelize sequential applications without wor-
rying about data dependencies at compile time. Even if there are dependencies between speculative threads the hardware
support guarantees correct program execution. This support significantly increases the scope of applications that can be
automatically parallelized, because there are many applications that have thread-level parallelism, but whose memory
dependencies cannot be analyzed at compile time. The Multiscalar architectare was the first architecmre to include this
support [17]. More recently, there have been proposals to add support for speculative thread parallelism to a chip multi-
processor (CMP) [14] [18]. In this paper, we focus on improving performance with speculative thread support on the
Hydra CMP [7].

To generate code for a speculative thread architectare, the compiler must break the program into threads. A program can
be partitioned into arbitrary threads, but to minimize the effect of control hazards it is desirable to pick threads that are
either control independent or whose control dependencies are easy to predict. Loop and procedure program constructs
are good candidates for speculative threads [15]. With loops the speculative threads are the loop iterations, while with
procedures the speculative threads are the procedure call and the code following the procedure call.

Given a sequence of speculative threads, it is the job of the Hydra hardware to execute these threads correctly. The hard-
ware accomplishes this using the data speculation support in the memory system. This support allows the creation of
speculative state that can be squashed when necessary. Speculative threads are executed in parallel, but commit in
sequential order. Committing a speculative thread requires the thread to write out any speculative data that was created
during the execution of the thread to the sequential state of the machine. At any point before a thread is committed, it
may be forced to restart due to a data dependency violation with a less speculative thread. A data dependency violation
occurs when a speculative thread reads a data value before it has been written by a less speculative thread. The simplest
way to deal with violations is to discard the speculative state and restart the speculative region from the first instruction
in the thread.

Unfortanately, the hardware support for speculation described above does not guarantee good parallel performance.
There are several reasons why parallel performance with speculative threads may be limited. The most fundamental limit
is a lack of parallelism in the application. This manifests itself as low parallel coverage (the fraction of the sequential
execution time that can be parallelized using speculative threads) or reasonable coverage but low performance due to
true data dependencies in the program that continually cause violations. These data dependencies may be inherent to the
algorithm, or they may just be an unfortunate programming choice that worked well in sequential execution but causes
unnecessary dependencies when the program is speculatively parallelized. Less fundamental performance limits come

rv*

DISTRIBUTION STATEIVIENT A
Approved for Public Release

Distribution Unlimited

from the software overheads associated with managing speculative threads, the increased latency of communicating
through memory (instead of registers), and the wasted work that must be reexecuted when a violation occurs.

Optimization of software and hardware can improve the performance of speculatively parallelized applications. Compi-
lation technology can be used to improve performance by choosing threads that are more likely to be parallel. Further-
more, compilers and manual optimization can be used to rearrange code to reduce the likelihood of violations. The
model used for dividing the program into speculative threads can also be improved by not limiting speculative threads to
loops and procedures. Runtime software can be optimized to reduce the overheads of managing speculative threads and
a combination of hardware and software can be used to minimize the performance losses from violations. In this paper
we show how all of these techniques can be combined to improve the performance of speculatively parallel appHcations
on the Hydra CMP.

The rest of this paper describes the Hydra system and shows how the performance of Hydra on speculatively parallelized
applications can be improved using both software and hardware. In the next section, we describe previous work in thread
speculation. In Section 3, we briefly describe the Hydra chip multiprocessor hardware. We also describe software sup-
port required for speculation. In Section 4, we present and explain the performance of the baseline Hydra system on ten
benchmarks. In Section 5, we describe how the model used to divide the program into threads can be extended to expose
more speculative parallelism and explain how violation statistics collected from previous runs of a speculative program
can be used to find and eliminate unnecessary dependencies. We also describe how the base support for speculation in
the memory system can be improved to reduce the effects of data dependence violations, which provides further perfor-
mance gains. In Section 6, we present speculation performance results using these software and hardware enhancements.
We conclude in Section 7.

2 Previous Work

The first mention of speculative threads was in the work of Knight in the context of LISP [9]. However, the Multiscalar
paradigm [3] [17] has most directly influenced the Hydra research. The Multiscalar paradigm takes a hardware-centric
approach to extracting fine-grained parallelism from sequential integer programs. The hardware required includes pro-
cessing units whose register files are connected by a ring and a shared primary data cache with speculative memory sup-
port provided by an address resolution buffer (ARB) [4]. More recently, the speculative versioning cache work has
eliminated the requirement of the shared primary data cache using extensions to a multiprocessor cache coherency pro-
tocol [5]. The Multiscalar group has observed that Hind speculation on all data dependencies can severely impact perfor-
mance when the speculation is wrong and that dynamic data dependence prediction techniques can be used to improve
performance over blind speculation [12]. Following on the Multiscalar work other researchers have proposed adding
speculative data support to a chip multiprocessor [14] [18]. Here the goal is to ease the task of creating parallel programs
for a multiprocessor. The assumption in these proposals is that the processing units are less tightly coupled than in the
Multiscalar architectare and so the focus of the CMP work is on extracting and exploiting coarser grain-parallelism.

3 The Hydra CMP

CentrafzedBinArblrelionMeclnrtsins

rix
CPU1

r"^
Lt bist.l LIIMKCulwft^
Owhe [spacrfiliM«Sn>»wt

CPU3

St. I LI
CulM BpaniilianSiwwt

write-through BIB (64b I

SfEdrilinYMte Bulten

On-cNp L2 Cache

ReadfRepbce Bus (256b]

Rambus Memoty Inteiface

TTTT
UO Bus IMerrace

DRAM Main Memory I/O Devices

Figure 1. The main datapaths in the Hydra CMP.

Hydra is a chip multiprocessor (CMP) with data speculation support. We briefly describe the Hydra architecture and
software support environment here in sufficient detail to understand the remainder of the paper, but the Hydra system is
more completely described in [6] and [7].

3.1 Architecture

The Hydra architecture consists of 4 MIPS processors, each with a pair of private data caches, attached to an integrated
on-chip secondary cache using separate read and write busses, as shown in Figure 1. The processors use data caches with
a write-through policy to simplify the implementation of cache coherence. All writes propagate through to the write back
secondary cache using the dedicated write bus. In order to ensure coherence, the other processors' data caches watch this
bus — using a second set of cache tags — and invalidate lines to maintain cache coherence. On-chip communication
among the caches and the external ports, such as data cache refills, are supported by the cache-line-wide read bus. Both
buses are fully pipelined to maintain single-cycle occupancy for all accesses. Off-chip accesses are handled using dedi-
cated main memory and I/O buses. For the applications evaluated in this paper, the bandwidth of these buses is not a per-
formance bottleneck. A summary of the pertinent characteristics of the Hydra CMP memory system appears in Table 1

LI Cache L2 Cache
Main

Memory

Configuration Separate I & D
SRAM cache pairs

for each CPU

Shared, on-chip
SRAM cache

Off-chip DRAM

Capacity 16KB each 2MB 128MB

BusWidtli 32-bit connection to
CPU

256-bit read bus and
32-bit write bus

32-bit wide Rambus
connection (2 x

DRDRAM) at full
CPU speed

Access Time 1 CPU cycle 5 CPU cycles at least 50 cycles

Associativity 4-way 4-way N/A

Line Size 32 bytes 32 bytes 4 KB pages

Write Policy Writethrough, no
write allocate

Writeback, allocate
on writes

"Writeback" (virtual
memory)

Inclusion N/A Inclusion not
enforced by L2 on

LI caches

Includes all cached
data

Table 1. Hydra memory hierarchy characteristics.

The data speculation support in Hydra allows threads to execute in parallel but ensures that they commit in sequential
order. The hardware guarantees that no speculative thread can change the sequential state of the processor, which is kept
in the secondary cache, until the thread commits. Executing threads in parallel causes memory data hazards. Hydra deals
with WAR and WAW hazards using the implicit memory renaming that occurs when a processor has speculative data in
its data cache. This memory renaming avoids stalling speculative threads for these memory hazards. RAW hazards
caused by true data dependencies result in violations, that force the violating processor to back up and start again from
the last place it took a checkpoint, at the beginning of the speculative region it is currently processing. However, die abil-
ity to forward speculative data between threads running on different processors using the write bus reduces the occur-
rence of these violations.

Data speculation support in Hydra consists of a set of new coprocessor instructions, extra tag bits which are added to the
processor data caches and a set of secondary cache write buffers. The coprocessor instructions are used as an interface to
the thread speculation control hardware, the tag bits are used to detect data dependency violations between threads, and
the write buffers are used to buffer speculatively written data until it can be safely committed to the secondary cache or
discarded. The components of the speculative support in Hydra work together to provide speculative thread execution.

3.2 Software Support

There is both compiler and run-time system software support for speculation in the Hydra architecture. A source to
source compiler (hydracat) is used to transform C for and while loops into speculative for and whileloops. Cur-
rently, the loops are selected by the programmer by designating candidate loops using the pf or and pwhile keywords.
The compiler then automatically transforms these loops to their speculative versions by outlining the loop as a procedure
and by analyzing the dataflow in the loop body so that any variable references that have the potential to create loop-car-
ried dependencies are globalized. A simplified example of this transformation process, based on the optimized trans-
forms described in Section 4, in shown in Figure 2.

The other component of the software support for speculation is the runtime system. The runtime system is used to con-
trol speculative threads through the coprocessor interface and stores to special I/O locations. This collection of small
software control routines is used to control the speculative threads currently active in the system. In our baseline system,
these routines control threads created in two different ways: loop iterations and procedure calls. When a procedure call is

This Is the original cholesky toop:

/* i, k, n, and sum ere local to this function '
/* Tlje a, b, and x arrays are global variables =

for (1-1; 1 <-n: l*t)
{

suB»b[i];
lor (k-l-l; k>.l, k--)

sun — aCiltkl » x[k|;
x[il ■ 3uj»/p[i];

)

lese definitions are placed at the start of the source fi
This added function perfonns the speculative loop:

Tf e:
void cholesky_0(cholesky_0_Type *globalized)

/* Purely local variables to each iteration */
float sun;
int k;

/* Kead-only variables */
int n - globalized->n;

/* Variables that we vlll localize */
int ij

/« Start speculative thread control */
specJbegin(S.8.start_of_loop_label. &&terminate_label);

3tart_of_loop_label:

y* localization and increment of for variable */
i - <globals->l)+t;

f* for loop termination clause */
if (l(i<-n)) spec_terBlnate();

/* original loop body */
sum°b[i];
for (k*i-l; k>-l; k—)

sun -a[il[k] « x[kl;
x[i] - sua/p[i];

/* normal end of loop Iteration */
9pec_end_of_iteration();

terminate_label:
return;

)

/* definitions lor loop cholesky_0 */
typedef struct chole9ky_0_Type

/* for loop variable */
Int i;

/* other local variables requiring globalization */
int n;

)
choleaJcy 0 Type;
cholesky 0 Type cholesky_0_Sttuct;
void cholesky O(cholesky O^Type *globals);

This replaces the original loop In the code:

/* globalization of general locals */
cholesky_0_Struct,n - n;

/« for loop initialization */
chole3ky_0_Struct.i - i;

/* notify slave processors irtiich loop to process */
globelStructPtr - &(cholesky_0_Struct);
globalLoopPtr - 6.cholesky_0;

/* send the MSter CPU to help out, too »/
choleaky_0(&(cholesky_0_Struct))j

/* restore locals after loop «/
i - cholesky_0_Struct.i;

Figure 2. Cholesky substitution example.

encountered, the handlers attempt to fork off a thread to speculatively execute the code following the return from the
call, while the original thread executes the code within the procedure itself. If the return value from the procedure is pre-
dictable, and if no memory referenced as a side effect by the procedure is read immediately, then the two threads may
run in parallel. Similarly, when a pf or or pwhile loop is encountered, the system starts threads on all of the proces-
sors to handle iterations of the loop, which are then distributed among the new threads in a round-robin fashion. The rou-
tines must also track the order of all speculative threads in the system in order to properly forward data between threads
and to signal data dependency violations. Data dependency violations trigger exception routines which squash and
restart the violating thread and all threads that are more speculative. See [7] for further details.

4 Base Speculation Performance

4.1 Benchmarks and Simulation Methodology

To evaluate our speculative system and identify potential areas for improvement, we used ten representative benchmarks
that cover a significant portion of the general-purpose application space. These benchmarks are listed in Table 2. The
speculative versions of the benchmarks were created using Hydracat. The binaries were generated using GCC 2.7.2 with
optimization level -02 on an SGI workstation running IRIX 5.3. Currently, Hydracat only works on C programs. This
prevents us from experimenting with any of the SPEC95 floating-point benchmarks, which are all written in FORTRAN.
However, from the point of view of extracting parallelism, the C SPEC92 floating point benchmarks are more challeng-
ing than theSPEC95 floating point benchmarks so we would expect the performance on SPEC95 benchmarks to be sim-
ilar.

All the performance results we present are obtained by executing the benchmarks on a detailed cycle-accurate simulator
that accurately models the Hydra architecture described in Section 3.1. The execution time of the speculative binaries
includes the time spent in the run-time system. The simulator is capable of switching back and forth between execution
using the cycle-accurate simulator and execution directly on the real machine. To shorten simulation time, we run initial-
ization code on the real machine and only perform cycle-accurate simulations on the critical regions of code. The simu-

Application Source
Input Data

Set

General Integer compress SPEC95 train

eqntott SPEC92 reference

mSSksim SPEC95 test

wc UNIX utility 10,000 character file

Multimedia Integer ijpeg (compression) SPEC95 train

mpeg-2 (decoding) MediaBencli [11] test.m2v

Floating Point alvin SPEC92 reference

ciioleslcy Numerical Recipes [16] 100x100

ear SPEC92 reference

simplex Numerical Recipes [16] 40 variables

Table 2. Benchmark summary.

lations are representative because we ensure that code that represents 95% of the sequential execution tiine of each
benchmark is executed by the simulator.

4.2 Baseline Performance

The performance of the base Hydra CMP is shown in Figure 3. The speedups represent the execution time of one of the
processors in Hydra running unmodified C code divided by the execution time of the speculative Hydra CMP running
speculatively parallelized C code. We see that the performance is highly dependent on the application and varies from
0.6 to 3.4. To understand the performance profile in more detail, we explain how each benchmark was parallelized and
what limits the speculative parallel performance on the benchmark.

Figure 3. Baseline speculation speedup.

compress (compression): This benchmark compresses an input file using entropy encoding. Compress is dominated by
a single small loop (about 1(X) instructions, on average) that has complex control flow. As observed in [17] and contrary
to the analysis in [18] there is a loop-carried dependency that limits the parallelism in this loop. However, there are
opportunities to overlap the I/O routines of separate loop iterations. The limited parallelism and small thread size in
compress are overwhelmed by the speculation software overheads on the baseline system.

eqntott: This benchmark performs logic minimization on a set of input equations. Unlike the other benchmarks, we did
not parallelize the loops in this application, because the only good candidate loop (in the cmppt function) is too small to
be effectively parallelized on Hydra without significant programmer help. As a result, we used procedure-call based
speculation. Despite a reasonable amount of parallelism in the recursive quicksort procedure, the speculation software
overheads and squashing of non-parallel procedures limit speedup.

mSSksim: This program performs simulates a Motorola 88000 RISC CPU on a cycle-by-cycle basis. It consists of a sin-
gle, large instruction execution loop that is potentially parallel, but unfortunately also accesses several global variables
that tend to exhibit true dependencies in a manner that is very difficult for a compiler to statically analyze. In the specu-
lative version of m88ksim, accesses to these global variables cause a considerable number of violations. The execution
time that is lost when these violations occur limits speedup.

wc: This is the UNIX word count utility, which counts the number of characters, words, and lines in an input file. It pri-
marily consists of a single character processing loop that is very small — loop iterations have only 20-40 instructions, on
average. In addition, there are loop-carried dependencies, such as the file pointer and in a worrf indicator. The speculative
version of this tiny loop is slowed down by the speculation software overheads and the relatively high interprocessor
communication latencies, caused by communicating through memory instead of registers. Consequently, wc slows down
by a considerable amount.

ypeg (compression): This is an integer, multimedia benchmark that compresses an input RGB color image to a standard
JPEG file, using a lossy algorithm consisting of color conversion, downsampling, and DCT steps. The multiple loops in
these steps posses a large amount of inherent parallelism, but were originally coded so that the parallelism is often
obscured by existing program semantics, such as numerous pointers, poor code layout, and odd loop sizes. The specula-
tively parallel version of ijpeg exposes this parallelism, but performance is limited by parallel coverage and speculation
software overheads. However, of the integer benchmarks, ijpeg performs the best.

mpeg (decoding): This is a benchmark from the Mediabench suite [11] that decodes a short MPEG-2 video sequence to
an RGB frame buffer. ParalleUzation occurs at the macro block level, where the variable-length decoding (VLD) is per-
formed. The VLD step is completely serial, but speculation is able to overiap the processing performed during the other,
more parallel stages of decoding (IDCTs and motion estimation) with the serial VLD step of later macroblocks. This par-
allelization technique is described in greater detail for a hand-parallelized version of mpeg in [8]. Despite a significant
amount of potential parallelism, MPEG-2 decoding slows down because of a loop-carried dependency that unnecessarily
serializes execution.

alvin: This is a neural network training application for autonomous land vehicle navigation. It is composed of four key
procedures which are dominated by doubly-nested loops. Although these loops are parallel, the parallelism is obscured
by the way in which the application is coded with pointer variables. However, these loops are easily speculatively paral-
lelized and result in good parallel performance.

cholesky: Cholesky decomposition and substitution is a well known matrix kernel. The multiply nested loops in the
decomposition procedure have significant amounts of parallelism, but they also contain loop-carried dependencies that
occur infrequently. In conventional parallelization, these dependencies would have to be detected and synchronized, but
with speculation we can obliviously parallelize them. The loops in the substitution routine are also parallel, but here each
loop is written in so that a loop-carried dependency serializes the speculative loop. Fortunately the decomposition proce-
dure dominates the sequential execution time and speedup is still quite good.

ear: This benchmark simulates the propagation of sound in the human inner ear. The conventional wisdom is that the
structure of this program is a sequential outer loop and a sequence of parallel inner loops [10]. The parallel inner loops
are extremely fine grained [10] and so are not good candidates for speculative threads on the Hydra CMP. However, the
outer loop can be speculatively parallelized and achieves very good speedup. The dependent outer loop pipelines across
the processors quite well because each iteration is only dependent on the previous iteration in a way that allows much of
the computation to be overlapped. Memory renaming ensures that, even though each iteration of the outer loop uses the
same data structures, each processor dynamically gets a private copy.

simplex: This kernel solves problems in linear programming. The three procedures in this kernel have a number of small
loops. The dependences between the iterations of these loops are not at all obvious. The speculative parallelization of
these loops achieves good speedup, but less than the other numerical benchmarks. This is mainly due to the speculation
software overheads that dominate the short running loops.

Table 3 shows some key performance characteristics for the speculative versions of the ten benchmarks. The data for this
table was collected with the speculation control software optimizations to be discussed in Section 5.1. Except for the
ijpeg and simplex benchmarks, the parallel coverage in speculation exceeds 90 percent. However, high coverage does
not guarantee good performance when there are a significant number of violations. The number of restarts per committed
thread (restart rate) gives a good indication of the inherent parallelism in an application. As expected, the benchmarks
fall into two main classes: integer benchmarks with restart rates that are much greater than one and numerical bench-
marks with restart rates less than one. The combination of the coverage, the restart rate, the amount of work that is lost

due to the restarts, and the speculation software overheads determines the fraction of the time the processors are doing
useful work (CPU utilization), which ultimately determines performance.

A key architectural metric is the size of the speculative write state. This metric is important because it indicates the fea-
sibility of implementing a Hydra CMP architecture with reasonably sized speculative write buffers that achieves good
performance. Table 3 lists die number of 32 byte cache line buffers required to hold die maximum size write state for the
ten benchmarks. The resuUs indicate that a buffer size of 64 lines (2 KB) per processor is sufficient for all but the alvin
and ear benchmarks. These two applications would require 8KB write buffers for maximum performance. However, it
would be possible to reduce the memory requirements of the alvin benchmark to an arbitrary degree simply by using
loop iteration chunking on the inner loop of alvin, as described in Section 5.4, instead of our original scheme of speculat-
ing on the outer loop. Lastly, the Hydra memory system is capable of handling overflows simply by temporarily halting
execution on the speculative processor that experiences the buffer overflow. Thus, it may be possible to capture the write
state from most iterations using a smaller buffer, as we showed in [7].

Application
Coverage

(%)
Restarts

per thread

CPU
utilization

(%)

Maximum
Speculative
write state

compress 100 6.4 28 24

eqntott 93 12.1 32 40

mgSksim 94 15.5 29 28

wc 100 4.6 69 8

ijpeg 60 2.35 42 32

mpeg 92 1275 25 56

alvin 96 0.31 81 158

cholesky 91 0.88 74 4

ear 96 0.32 97 164

simplex 86 0.14 60 14

Table 3. Speculation performance characteristics. The speculative write state is presented in
terms of 32 byte cache lines.

5 Improving Speculation Performance

There are three key problems that need to be addressed to improve speculation performance: 1) reducing the perfor-
mance losses from the speculation software and the interprocessor communication overheads, 2) increasing the amount
of parallelism in the program that is exposed to the speculation system, and 3) reducing both the number of violations
and the work lost when violations occur. We propose solutions to these problems in this section.

5.1 Loop-only Speculation

The protocol software required to handle loops is much simpler than the protocol software for procedure calls. As soon
as a loop starts, its iterations are distributed among the processors in a simple, round-robin fashion. This allows the con-
trol routines for the iteration distribution to be very simple. In contrast, procedure calls occur one at a time, on arbitrary
processors, in an often unpredictable pattern. As a result, the control software must be able to handle a complex, dynam-
ically changing list of speculative threads. This complexity does not lend itself to simple, fast software control routines,
as the routines must maintain a dynamic list of threads. Being able to do both loops and procedures simultaneously
increases the complexity of both, slowing down the system even more. By limiting speculation to loops alone, we can
dramatically simplify the control routines so they require many fewer instructions. Table 4 shows the improvement we
were able to obtain by simplifying several key loop-control routines so that they would only work in a loop-only envi-
ronment. The savings obtained by simplification of the handler that must be called at the end of each loop iteration and
the violation-processing handlers have the most influence on the results we obtained.

5.2 Explicit Synchronization

Our simulator produces output that explicitly identifies reads and writes in our benchmark code that cause violations. In
a real system, similar feedback could be obtained by adding speculative load PC memory to the primary cache lines,
broadcasting write PCs along with data on the write bus, and then interpreting the results from these hardware structures
using instrumentation code built into the speculation software handlers (at profiling time only — normally the overhead
imposed by such code could be eliminated). We also developed a tool to translate the read and write addresses produced
by the simulator to source code locations, for easier analysis. Armed with this information, we attempted to reduce the

Routine Use

Procedure
and Loops
Overhead

Loop-only
Overhead

Procedures Start Procedure Forks off the code following a procedure call to
another processor, speculatively

-70 —

End Procedure Completes processing for a procedure that has
forked off its completion code, and starts run-

ning another speculative task on the CPU

-110

Loops Start Lx)op Prepares the system to speculatively execute
loop iterations, and then starts execudon

-70 -30

End of each loop
iteration

Completes the current loop iteration, and then
attempts to run the next loop iteration (or spec-

ulative procedure thread, if present)

-80 12

Finish Loop Completes the current loop iteration, and then
shuts down processing on the loop

-80 -22

Support Violation: Local Handles a RAW violation committed by this
processor

-25 7

Violation: Receive
from another CPU

Restarts the current speculative thread on this
processor, when a less speculative processor

requires this

-80 7

Hold: Buffer Full Temporarily stops speculative execution if the
processor runs out of primary cache control

bits or secondary cache buffers

15 12

Hold: Exception Pauses the processor following a SYSCALL
instruction, until it is the non-speculative,

"head" processor

25 + OS time 17 + OS time

Table 4. Overheads of key speculation software handlers.

number of violations caused by the most frequently violating dependencies in an effort to reduce the amount of work
being discarded by the system during restarts.

The first technique we explored to minimize effects from these critical dependencies was to add explicit synchronization
around them, in order to prevent them from restarting speculative regions. This was achieved simply by adding a way to
issue a non-speculative load instruction, that does not set violation-control bits in the primary cache, even while the pro-
cessor is executing speculatively. This load may be used to test lock variables that protect the critical regions of code
around pairs of reads and writes that cause frequent violations, without actually causing violations themselves. Before
entering a critical region, synchronizing code spins on the lock variable until the lock is released by another processor.
Once the lock is freed, the speculative processor may perform the read at the beginning of the critical region. Finally,
when a processor has performed the write at the end of the region, it updates the lock so that the next processor may
enter the critical region. This process eliminates all restarts caused by read-write pairs in the critical region, at the
expense of forcing the speculative processors to serialize during the protected code, eliminating any possibiUty of find-
ing parallehsm there. The lock handling code also adds a small software overhead to the program. Figure 4 shows the
necessary additions.

Similar synchronization mechanisms have been proposed before. In [18], special loads and stores were used to pass data
between processors direcrty and perform explicit synchronization at the same time. This method avoided die overhead of
extra synchronization code, but required more complex hardware synchronization mechanisms to handle the special
loads and stores. An all-hardware data dependence prediction and synchronization technique was explored in [12] for
use with the Multiscalar architecture. Special hardware structures tracked dependencies and then automatically used
synchronizing hardware to prevent restarts due to dependent load-store pairs. This hardware-based technique allows a
limited degree of automatic synchronization even without programmer intervention. An alternative design for a super-
scalar architecture that tracks sets of stores that commonly supply data to a following, dependent load was proposed in
[2]. Finally, we presented some preliminary results on the use of synchronization on the compress benchmark in [7].

5.3 Code Motion

The second technique that we applied to reduce problems from critical dependencies, by increasing the inherent parallel-
ism in the program, was to move the dependencies in the source code. Once our tools reported which read-write pairs
caused the most violations, we could manually move the reads and writes to reduce the size of the critical region
between the read and write. Reads can sometimes be delayed by moving them down past non-dependent code. This is
usually only possible when a loop consists of several non-dependent sections of code that can be interchanged freely.
More importantly, though, we were frequently able to rearrange code to make writes to shared variables occur earlier.
Induction variables are an obvious target for such optimizations. Since the write is not dependent upon any computation
within the loop, these can just be moved to the top of the loop body. Performance on other variables may be improved by

Original loop:

vhile (1)
{

parallel code block . . .
sequential, critical code block
parallel code block . . .

Final speculative loop body, with synchronization:

start_of _loop„label:

/* Get our iteration number */
mylteration = (globals->iteration)++;

. . . parallel code block . . .

/* Spin until we acquire the lock */
/* NOTE; "SyncRead" indicates a non-violating load */
while (SyncRead(globals->lockIteration) < mylteration)

()
. . . sequential, critical code block . . .

/• Release the lock •/
(globals->lockIteration)++

parallel code block

/* normal end of loop iteration */
spec_end_of_iteration();

Figure 4. Explicit synchronization code.

reshuffling code to move the critical writes as early in the loop body as possible. Unlike code rearrangement for a con-
ventional multiprocessor program, only the most critical reads and writes of variables need to be moved to reduce the
potential for restarts. For example, variables that often — but not always — act Uke induction variables can be specula-
tively treated Uke induction variables at the top of the loop. Should they later act differently, the variable may be re-writ-
ten, probably causing restarts on the more speculative processors. However, as long as the value computed and written
early is used most of the time, the amount of parallehsm in the program may be vastly increased.

For the measurements taken in this paper, we did all code motion by hand based on violation statistics provided by our
simulator. However, while synchronization may easily slow down a program if implemented in an improper fashion,
code motion adjustments will rarely backfire. Hence, a feedback-driven compiler could perform this job almost as well
as a human programmer by aggressively moving references that frequently cause violations within speculative code, up
to the limits imposed by existing data and control dependencies, in order to reduce the critical regions between depen-
dent read-write pairs.

5.4 Loop Body Slicing and Chunking

More radical forms of code motion and thread creation are possible by breaking up the loop body up into smaller chunks
that execute in parallel or its converse, combining multiple speculative threads together into a single thread. With the
former technique, loop slicing, a single loop body is spread across several speculative iterations running on different pro-
cessors, instead of running only as a single iteration on a single processor In the latter case, loop chunking, multiple loop
iterations may be chunked together into a single, large loop body. Loop bodies that were executed on several processors
are combined and run on one. This generally can only be performed usefully if there are no loop-carried dependencies
besides induction variables, which limits the versatility of loop chunking. However, if a parallel loop can be found,
chunking can allow one to create speculative threads of nearly optimal size for the speculative system. For example,
chunking could be used on the inner loop nest of the alvin benchmark to create speculative threads that would not require
large amounts of write state and would still achieve high performance. Our original version used the outer loops as a
source of speculative threads and required large write buffers, but the speculation software overheads would degrade per-
formance substantially if we assigned each iteration of alvin's inner loops to an independent speculative thread. Figure 5
shows an example of slicing and chunking on a typical loop.

While loop chunking only needs to be performed if the body of the loop is so small that the execution time is dominated
by speculation overheads, the motivation for loop slicing are more complex. The primary reason is to break down a sin-
gle, large loop body into smaller chunks that are more optimally sized for speculation. In a very large loop body, a single
memory dependence violation near the end of the loop can result in a large amount of work being discarded. Also, the
large loop body may overflow the buffers holding the speculative state. Since a buffer overflow prevents a speculative

A) Original loop: B) Original loop:

for (i-0; 1 < H; i++)

. . . sMBll saount of vork . . .
)

while (1)

. . . first big code block . . .

. . . second big code block . . .
inportantGlobal = CalculateMeO;
. . . third big code block . . .

)

Final speculative loop body, with ciiunlcing: Final speculative loop body, with slicing:

start_of_loop_label:

/* localization and increnent of for variable */
i - (globals->i):
unroll_i - <alobala->i) ♦- UKROLL_FACTOK;

f* "unrolling" for loop */
for (; i < xmroll_i; i++)

/* original for loop termination clause */
if (1(1 < N)) spec_ter»in8te();

/* original loop body */
. . . sMaXl aMount of vork . . .

)
/* noraal end of loop Iteration */
spec_end_o£_iteration();

atart_of_loop_label:

/* localization and increment of slice variable •/
slice - (globals->slice)++;
if (slice »- 2) global9->3llcB - 0;

swltch(slice)

case 0:
. . . first big code block . . .
break;

case 1:
. . . second big code block . . .
break;

case 2:
(* laportentGlobal is "precoaputed" now «/
iaportantGlobal - CalculateMe();
. . . third big code block . . .
break;

}

(* notial end of loop iteration */
spec_end_of_iteration();

Figure 5. Loop body a) chunking and b) slicing examples.

processor from making forward progress until it becomes the head, non-speculative processor, this should normally be
avoided. This is also a way to perform a form of code motion to prevent violations. If diere is code in the loop body that
calculates values that will be used in the next loop iteration and this code is not usually dependent upon values calculated
earlier in the same loop iteration, then this code may be sliced off of the end of the loop body and assigned to its own
speculative thread. This is the case with the third slice in Figure 5b. In this way, the values calculated in the sliced-off
region are essentially precomputed for later iterations, since they are produced in parallel with the rest of the loop itera-
tion. The advantages of slicing over code motion are no extra early-computation code needs to be added to the original
loop body and no data dependency analysis is required to ensure it is legal to perform the code motion.

Loop chunking may be implemented in a compiler in a similar manner to the way loop unrolling is implemented today,
since both are variations on the idea of combining loop iterations together. In fact, die two operations may be merged
together, so that a loop is unrolled as it is chunked into a speculative thread. As a result, adding this capability to current
compilers should not be difficuh. Effective slicing, will require more knowledge about the execution of a program than
loop unrolling although die ability to analyze the control structure of the application combined with violation statistics
should be sufficient. However, slicing should not be performed indiscriminately because slicing may allow speculative
overheads to become significant and/or it may result in significant load imbalance among the processors if some sUces
turn are much larger than others. The former problem will obviously slow the system down, while die latter problem will
may degrade performance with the current Hydra design, since a speculative processor that completes its assigned thread
must stall until it becomes the head processor, wasting valuable execution resources in the process. This problem can
only be overcome by making the speculation system allow multiple speculative regions within each CPU, so that a pro-
cessor that completes a speculative region may immediately go on to another while it waits to commit the results from
die first. However, implementing this capability has significant hardware overheads [7].

5.5 Hardware Checkpointing

Another technique to prevent large quantities of work from being discarded after violations is to provide a mechanism
for taking extra checkpoints in the middle of loop iterations. The basic speculation system takes a checkpoint of the sys-
tem state only at the beginning of a speculative thread, and must return to that checkpoint after every violation. A possi-
ble technique to save time on restarts is to take an extra checkpoint whenever a violation-prone load actually occurs. That
way, if it is later discovered that the load really did cause a violation, the work done by the speculative processor before
the bad load doesn't need to be discarded, because the processor will be able to return to the machine state just before the
load.

Hardware checkpointing requires four key mechanisms. First, a hardware mechanism must be installed to track the PCs
of loads that tend to cause violations. When one of these loads is encountered, the mechanism must signal the specula-
tive hardware to take a checkpoint. If load PCs are already attached to primary cache lines in order to allow violation sta-
tistics tracking, as described in Section 5.2, this will be a fairly minor addition. The other three items are necessary to
take the checkpoints themselves. Backup copies of the register file are necessary to hold the register file state at the

10

checkpoint. These backups are not normally necessary, since checkpoints are usually made during speculation software
handlers, when the register file is in a well-known state. However, checkpoints made at violating loads may come at arbi-
trary times, when the register file is in an arbitrary state. From a hardware point of view, this addition is the most trouble-
some, since it requires modifications to the processor's register file. Less problematic are additional sets of bits in the
primary cache to indicate that words have been loaded ("read" bits) and additional, smaller store buffers before the sec-
ondary cache. For each checkpoint, a new set of "read" bits and store buffers are needed to track the speculative state.
The other speculation control bits in the primary cache may be safely shared among all the checkpoints, to reduce the
hardware requirements. The store buffers do not need to grow significantly in overall memory size, because each original
monolithic speculative thread now has its stores scattered over several smaller checkpoint store buffers. Only a relatively
small overall size increase is necessary to handle the inevitable load imbalance that will occur among the different
checkpoints.

6 Improved Speculation Performance

After applying the software optimizations to the benchmarks and the hardware enhancements to the Hydra simulator, we
collected a new set of performance results. These results are shown in Table 5 and Figure 6. From these results it is clear

Application
Procedures
and Loops Loops Only

After
Software

Optimization

With
Hardware

Checkpoints

General Integer compress 1.00 1.42 1.57 1.71

eqntott 1.15 — 1.75 N/A

mSSksim 1.05 1.13 1.45 1.56

wc 0.62 1.57 — 1.64

Multimedia Integer ijpeg (compression) 1.31 1.56 — N/A

mpeg (decoding) 0.90 0.96 2.14 2.14

Floating Point alvin 2.79 3.02 — N/A

ciioiesky 2.71 2.85 3.16 3.25

ear 3.44 3.87 — 3.88

simplex 1.83 2.67 - N/A

Table 5. Performance with the various system enhancements.

4.

3.5-

3.

2.5-

2-

1.5-

1

0.5

0 ;ii
0)
(A

E o

■ Original Speedup

s Low-Overhead Loops

m Optimized Software

n Checl<pointing

n

±i s £
(0

00
F

<i>

?
E

o
CL
E

Figure 6. A performance comparison of the baseline system and the enhanced systems.

that lower overheads of loop-only speculation provide significant improvements in performance for all benchmarks. The

most dramatic improvement is seen with the wc benchmark, whose performance more than doubles. This is consistent
with wc's small loop body, that was completely dominated by the speculation software overheads in the base run-time
system.

We were able to optimize five (compress, eqntott, mSSksim, mpeg, and cholesky) of the ten benchmarks using the opti-
mizations described in Sections 5.2-5.4.

compress: Synchronization was added to compress to prevent the key loop-carried dependency from causing viola-
tions. This reduced the number of restarts by a factor of 3 (to 2.1 per iteration), allowing a greater speedup.

eqntott: The optimization of eqntott is a actually a change to the speculation software. Instead of speculating on all
procedure calls, we modified the system so that only calls to the recursive quicksort procedure generate new specula-
tive threads. This eliminates the performance losses from blind procedure speculation of procedures with little paral-
lelism.

mSSksim: The large loop body in mSSksim was sliced to expose parallelism within the loop body and to allow
code motion for a data value that is read early in each iteration, but is normally computed late in the previous itera-
tion. This code motion decreased the number of restarts by a factor of 5 (to 3.1 per iteration), as the amount of avail-
able parallelism was dramatically increased.

mpeg: The performance of the mpeg-2 benchmark was improved substantially by moving an induction-like vari-
able update from the end of the loop body to before the time-consuming DCT step. This code motion makes it possi-
ble for DCTs of multiple macroblocks to overlap. The same performance improvement was also achieved with
slicing. As with m88ksim, the additional parallelism exposed by these modifications reduced the number of restarts
by a factor of 5 (to 280 per iteration). Our speculatively parallel version of this code was actually faster than the mac-
roblock-based hand-parallelized version in [8], because our speculative system did not have to synchronize between
processors in such a conservative fashion.

cholesky: In the cholesky substitution program stage, the direction of the inner loop shown in Figure 2 is reversed so
that the loop carried dependency occurs on the last loop iteration, instead of the first. This allows the inner loop iter-
ations from consecutive outer loop iterations to overlap.

These modifications resulted in significant performance improvements in these benchmarks, as is shown in Table 5. In
particular, we were actually able to achieve a speedup of 2.14 on mpeg, whereas the baseline system slowed down.

The performance improvements from hardware checkpointing, with eight hardware checkpoints per processor, on the
optimized software are quite modest. Furthermore, mixing explicit software synchronization and hardware checkpoint-
ing is not useful, based on our observations with the compress benchmark. In effect, hardware checkpointing is an opti-
mistic form of synchronization — a form of "wait-free" synchronization. As a result, software synchronization just
provides additional overhead, slowing down the system while supplying little or no benefit, as it is redundant.

Table 6 summarizes the gains from these improvements for each of the major application classes using the harmonic
means

Category
Procedures
and Loops Loops Only

After
Software

Optimization

With
Hardware

Checkpoints

General Integer 0.90 1.29 1.58 1.66

Multimedia Integer 1.07 1.19 1.80 1.80

Floating Point 2.56 3.04 3.12 3.15

Total 1.27 1.64 2.03 2.09

Table 6. Harmonic mean summaries of performance results.

7 Conclusions

In this paper, we have shown that a few simple optimization techniques can dramatically improve the performance of the
Hydra CMP on sequential programs executed as a sequence of speculative threads. We achieved a 65 percent overall per-
formance improvement on the ten benchmarks and an 85 percent performance improvement on general integer bench-
marks.

We began with our baseline architecture from [7], which extracts speculative parallelism from procedures and loops.
This architecture is effective at exploiting speculative parallelism when large amounts of parallelism are present in the
application, as our results for the floating point benchmarks demonstrate. However, it has difficulty extracting parallel-

12

ism from conventional integer applications, sometimes slowing the applications down. A key problem with the baseline
Hydra speculation implementation is the high overheads incurred by the speculation software to properly handle both
procedures and loops. This problem is especially acute with integer applications because loops in integer code generally
execute for fewer iterations than those in numerical code, and the number of overhead-incurring restarts is higher due to
a larger number of dependencies between loop iterations and among procedures. Lastly, procedures typically degrade
performance because too much time is spent starting speculative threads for procedures that have little parallelism.

As an initial optimization technique, we eliminated procedures and focused on making loop iteration speculation run as
quickly as possible, with much lower speculation software overheads. This effort was very successful and resulted in sig-
nificant speedups on nearly all of our applications. Violation statistic gathering mechanisms allowed us to identify data-
dependent pairs of loads and stores in the benchmarks that frequently resulted in violations. On half of our applications,
we were able to use this information to guide several software optimization techniques that modified parts of the original
source code. These modifications improved performance significantly. Finally, we implemented a hardware checkpoint-
ing scheme that provides nearly optimal performance by eliminating most of the delay caused by frequently violating
loads. The performance gains that we were able to achieve with hardware checkpointing would probably not justify the
investment in hardware required to implement this technique.

Eqntott was the only benchmark that whose performance was not improved by the software optimization techniques.
Much of the execution time in eqntott is dominated by a recursive quicksort procedure call instead of an iterative loop of
reasonable size, and so our loop-based techniques were of little use. However, by limiting procedure speculation to the
key quicksort routine, instead of speculating throughout the program, we were able to get a significant improvement.
This strongly indicates that procedure speculation is still a viable alternative for environments where it can be used judi-
ciously (Java is one such environment [1]). This will be especially true if the overheads can be reduced through die addi-
tion of specialized hardware to accelerate the procedure speculation software.

Overall, our results demonstrate that there is a promising migration path from our current, simple sequential-to-specula-
tively parallel conversion tools, such as hydracat, to more sophisticated compilation tools that can optimize code for a
speculatively parallel architecture. Today, these optimizations still require programmer intervention, but it should be pos-
sible to automate them significantly, allowing a speculatively parallel CMP to be competitive with a conventional wide-
issue out-of-order machine on many integer applications [13]. At the same time, the CMP should be able to achieve
higher performance on inherently parallel applications, such as floating point numerical code and multimedia applica-
tions, than a comparable cost superscalar architecture.

Acknowledgments

This work was supported by DARPA contract DABT63-95-C-0O89.

References

[1] M. Chen and K. Olukotun, "Exploiting method-level parallelism in single-threaded Java programs," Proceedings
of Parallel Architectures and Compilation Techniques (PACT 98), pp. 176-184, Paris, France, October 1998.

[2] G. Z. Chrysos and J. S. Emer, "Memory dependence prediction using store sets," Proceedings of 25th Annual
International Symposium of Computer Architecture, pp. 142-153, Barcelona, Spain, June 1998.

[3] M. Franklin and G. S. Sohi, "The expandable split window paradigm for exploiting fine-grain parallelism,"
Proceedings of the 19th Annual International Symposium on Computer Architecture, pp. 58-67, Gold Coast,
Australia, May 1992.

[4] M. Franklin and G. Sohi, "ARE: A hardware mechanism for dynamic reordering of memory references," IEEE
Transactions on Computers, vol. 45, no. 5, pp. 552-571, May 1996.

[5] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi, "Speculative versioning cache," Proceedings of the Fourth
Intematioruil Symposium on High-Performance Computer Architecture (HPCA-4), Las Vegas, NV, February 1998.

[6] L. Hammond and K. Olukotun, Considerations in the Design of Hydra: a Multiprocessor-on-a-Chip
Microarchitecture, Stanford University Computer Systems Laboratory, Technical Report No. CSL-TR-98-749,
Stanford University, February 1998.

[7] L. Hammond, M. Willey, and K. Olukotun, "Data speculation support for a chip multiprocessor," Proceedings of
Eighth International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS VIII), pp. 58-69, San Jose CA, October 1998.

[8] E. Iwata and K. Olukotun, Exploiting coarse-grain parallelism in the MPEG-2 Algorithm, Stanford University
Computer Systems Laboratory, Technical Report CSL-TR-98-771, September 1998.

[9] T. Knight, "An architecture for mostly functional languages," Proceedings of the ACM Lisp and Functional
Programming Conference, pp. 500-519, August 1986.

[10] S. Keckler, W. Dally, D. Maskit, N. Carter, A. Chang, and W. Lee, "Exploiting fine-grain thread level parallelism
on the MIT multi-ALU processor," Proceedings of 25th Annual International Symposium on Computer
Architecture, pp. 306^317, Barcelona, Spain, June 1998.

13

[11] C. Lee, M. Potkonjak, and W. Mangione-Smith, "MediaBench: A tool for evaluating and synthesizing Multimedia
and communications systems," Proceedings of 30th Annual International Symposium on Microarchitecture,
Research Triangle Park, NC, December 1997.

[12] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi, "Dynamic speculation and synchronization of data
dependences," Proceedings of 24th Annual Int. Symp. Computer Architecture, pp. 181-193, Denver, CO, June
1997.

[13] K. Olukotun, K. Chang, L. Hammond, B. Nayfeh, and K. Wilson, "The case for a single chip multiprocessor,"
Proceedings of the 7th Int. Conf for Architectural Support for Programming Languages and Operating Systems
(ASPLOS-VII), pp. 2-11, Cambridge, MA, 1996.

[14] J. Oplinger, D. Heine, S.-W. Liao, B. A. Nayfeh, M. S. Lam, and K. Olukotun, Software and Hardware for
Exploiting Speculative Parallelism in Multiprocessors, Stanford University Computer Systems Laboratory
Technical Report CSL-TR-97-715, Stanford University, February 1997.

[15] J. Oplinger, D. Heine, M. Lam, and K. Olukotun, In Search of Speculative Thread-Level Parallelism, Stanford
University Computer Systems Laboratory Technical Report CSL-TR-98-765, July 1998.

[16] W. H. Press, S. A. Teulosky, W. T. Vetteriing, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific
Computing. Cambridge: Cambridge University Press, 1992.

[17] G. Sohi, S. Breach, and T. Vijaykumar, "Multiscalar processors," Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pp. 414—425, Ligure, Italy, June 1995.

[18] J. G. Steffan and T. Mowry, "The potential for using thread-level data speculation to facilitate automatic
paralleUzation," Proceedings of the Fourth International Symposium on High-Performance Computer Architecture
(HPCA-4), Las Vegas, NV, February 1998.

14

